博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Spark基本架构及原理
阅读量:5107 次
发布时间:2019-06-13

本文共 12387 字,大约阅读时间需要 41 分钟。

 

Hadoop 和 Spark 的关系

Spark 运算比 Hadoop 的 MapReduce 框架快的原因是:

  因为 Hadoop 在一次 MapReduce 运算之后,会将数据的运算结果从内存写入到磁盘中,第二次 Mapredue 运算时在从磁盘中读取数据,所以其瓶颈在2次运算间的多余 IO 消耗.

  Spark 则是将数据一直缓存在内存中,直到计算得到最后的结果,再将结果写入到磁盘,所以多次运算的情况下, Spark 是比较快的. 其优化了迭代式工作负载

 

Hadoop的局限 Spark的改进
    • 抽象层次低,代码编写难以上手
    • 通过使用RDD的统一抽象,实现数据处理逻辑的代码非常简洁
    • 只提供了Map和Reduce两个操作,欠缺表达力
    • 通过RDD提供了很多转换和动作,实现了很多基本操作,如Sort, Join等
    • 一个Job只有Map和Reduce两个阶段,复杂的程序需要大量的Job来完成,且Job之间的依赖关系需要开发者自行管理
    • 一个Job可以包含RDD的多个转换操作,在调度时可以生成多个阶段(Stage),而且如果多个map操作的RDD的分区不变,是可以放在同一个Task中进行
    • 处理逻辑隐藏在代码细节中,缺乏整体逻辑视图
    • RDD的转换支持流式API,提供处理逻辑的整体视图
    • 对迭代式数据处理性能比较差,Reduce与下一步Map之间的中间结果只能存放在HDFS中
    •  通过内存缓存数据,可大大提高迭代式计算的性能,内存不足时可以溢出到本地磁盘,而不是HDFS
 
    • ReduceTask需要等待所有MapTask都完成后才可以开始
 
    • 分区相同的转换构成流水线放在一个Task中运行,分区不同的转换需要Shuffle,被划分到不同的Stage中,需要等待前面的Stage完成后才可以开始
    •  时延高,只适用Batch数据处理,对于交互式数据处理和实时数据处理的支持不够
    •  通过将流拆成小的batch提供Discretized Stream处理流数据

 

 

Spark 的主要特点还包括:

    • (1)提供 Cache 机制来支持需要反复迭代计算或者多次数据共享,减少数据读取的 IO 开销;
    • (2)提供了一套支持 DAG 图的分布式并行计算的编程框架,减少多次计算之间中间结果写到 Hdfs 的开销;
    • (3)使用多线程池模型减少 Task 启动开稍, shuffle 过程中避免不必要的 sort 操作并减少磁盘 IO 操作。(Hadoop 的 Map 和 reduce 之间的 shuffle 需要 sort)

 

 

 

Spark 系统架构

明确相关术语

  • Application: Appliction都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码
  • Driver:  Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通常用SparkContext代表Driver
  • Executor:  某个Application运行在worker节点上的一个进程,  该进程负责运行某些Task, 并且负责将数据存到内存或磁盘上,每个Application都有各自独立的一批Executor, 在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutor Backend。一个CoarseGrainedExecutor Backend有且仅有一个Executor对象, 负责将Task包装成taskRunner,并从线程池中抽取一个空闲线程运行Task, 这个每一个oarseGrainedExecutor Backend能并行运行Task的数量取决与分配给它的cpu个数
  • Cluter Manager:指的是在集群上获取资源的外部服务。目前有三种类型
    • Standalon : spark原生的资源管理,由Master负责资源的分配
    • Apache Mesos:与hadoop MR兼容性良好的一种资源调度框架
    • Hadoop Yarn: 主要是指Yarn中的ResourceManager
  • Worker: 集群中任何可以运行Application代码的节点,在Standalone模式中指的是通过slave文件配置的Worker节点,在Spark on Yarn模式下就是NoteManager节点
  • Task: 被送到某个Executor上的工作单元,但hadoopMR中的MapTask和ReduceTask概念一样,是运行Application的基本单位,多个Task组成一个Stage,而Task的调度和管理等是由TaskScheduler负责
  • Job: 包含多个Task组成的并行计算,往往由Spark Action触发生成, 一个Application中往往会产生多个Job
  • Stage: 每个Job会被拆分成多组Task, 作为一个TaskSet, 其名称为Stage,Stage的划分和调度是有DAGScheduler来负责的,Stage有非最终的Stage(Shuffle Map Stage)和最终的Stage(Result Stage)两种,Stage的边界就是发生shuffle的地方
  • DAGScheduler: 根据Job构建基于Stage的DAG(Directed Acyclic Graph有向无环图),并提交Stage给TASkScheduler。 其划分Stage的依据是RDD之间的依赖的关系找出开销最小的调度方法,如下图

  • TASKSedulter: 将TaskSET提交给worker运行,每个Executor运行什么Task就是在此处分配的. TaskScheduler维护所有TaskSet,当Executor向Driver发生心跳时,TaskScheduler会根据资源剩余情况分配相应的Task。另外TaskScheduler还维护着所有Task的运行标签,重试失败的Task。下图展示了TaskScheduler的作用

    • 在不同运行模式中任务调度器具体为:
      • Spark on Standalone模式为TaskScheduler
      • YARN-Client模式为YarnClientClusterScheduler
      • YARN-Cluster模式为YarnClusterScheduler
    • 将这些术语串起来的运行层次图如下:

 

 

 

整个 Spark 集群中,分为 Master 节点与 worker 节点,,

  其中 Master 节点负责将串行任务变成可并行执行的任务集Tasks, 同时还负责出错问题处理等,

  而 Worker 节点负责执行任务

Driver 的功能是创建 SparkContext, 负责执行用户写的 Application 的 main 函数进程,Application 就是用户写的程序. 
  不同的模式可能会将 Driver 调度到不同的节点上执行.集群管理模式里, local 一般用于本地调试. 
每个 Worker 上存在一个或多个 Executor 进程,

  该对象拥有一个线程池,每个线程负责一个 Task 任务的执行.根据 Executor 上 CPU-core 的数量,其每个时间可以并行多个 跟 core 一样数量的 Task.Task 任务即为具体执行的 Spark 程序的任务. 

 

 

 

 

spark运行流程图如下

  1. 构建Spark Application的运行环境,启动SparkContext
  2. SparkContext向资源管理器(可以是Standalone,Mesos,Yarn)申请运行Executor资源,并启动StandaloneExecutorbackend,
  3. Executor向SparkContext申请Task
  4. SparkContext将应用程序分发给Executor
  5. SparkContext构建成DAG图,将DAG图分解成Stage、将Taskset发送给Task Scheduler,最后由Task Scheduler将Task发送给Executor运行
  6. Task在Executor上运行,运行完释放所有资源

 

 

 

Spark运行特点:

  1. 每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行Task。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统
  2. Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了
  3. 提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换
  4. Task采用了数据本地性和推测执行的优化机制

 

 

Spark作业基本运行原理

  我们使用spark-submit提交一个Spark作业之后,这个作业就会启动一个对应的Driver进程。

    根据你使用的部署模式(deploy-mode)不同,Driver进程可能在本地启动,也可能在集群中某个工作节点上启动。

    Driver进程本身会根据我们设置的参数,占有一定数量的内存和CPU core。

    而Driver进程要做的第一件事情,就是向集群管理器(YARN或者其他资源管理集群)申请运行Spark作业需要使用的资源,这里的资源指的就是Executor进程。

    YARN集群管理器会根据我们为Spark作业设置的资源参数,在各个工作节点上,启动一定数量的Executor进程,每个Executor进程都占有一定数量的内存和CPU core。

 

  在申请到了作业执行所需的资源之后,Driver进程就会开始调度和执行我们编写的作业代码了。

    Driver进程会将我们编写的Spark作业代码分拆为多个stage,每个stage执行一部分代码片段,并为每个stage创建一批task,然后将这些task分配到各个Executor进程中执行。

    task是最小的计算单元,负责执行一模一样的计算逻辑(也就是我们自己编写的某个代码片段),只是每个task处理的数据不同而已。

    一个stage的所有task都执行完毕之后,会在各个节点本地的磁盘文件中写入计算中间结果,然后Driver就会调度运行下一个stage。下一个stage的task的输入数据就是上一个stage输出的中间结果。如此循环往复,直到将我们自己编写的代码逻辑全部执行完,并且计算完所有的数据,得到我们想要的结果为止。

 

  Spark是根据shuffle类算子来进行stage的划分。

    如果我们的代码中执行了某个shuffle类算子(比如reduceByKey、join等),那么就会在该算子处,划分出一个stage界限来。

    可以大致理解为,shuffle算子执行之前的代码会被划分为一个stage,shuffle算子执行以及之后的代码会被划分为下一个stage。

    因此一个stage刚开始执行的时候,它的每个task可能都会从上一个stage的task所在的节点,去通过网络传输拉取需要自己处理的所有key,然后对拉取到的所有相同的key使用我们自己编写的算子函数执行聚合操作(比如reduceByKey()算子接收的函数)。这个过程就是shuffle。

 

  当我们在代码中执行了cache/persist等持久化操作时,根据我们选择的持久化级别的不同,每个task计算出来的数据也会保存到Executor进程的内存或者所在节点的磁盘文件中。

 

  因此Executor的内存主要分为三块:

    第一块是让task执行我们自己编写的代码时使用,默认是占Executor总内存的20%;

    第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用,默认也是占Executor总内存的20%;

    第三块是让RDD持久化时使用,默认占Executor总内存的60%。

 

  task的执行速度是跟每个Executor进程的CPU core数量有直接关系的。

    一个CPU core同一时间只能执行一个线程。

    而每个Executor进程上分配到的多个task,都是以每个task一条线程的方式,多线程并发运行的。

    如果CPU core数量比较充足,而且分配到的task数量比较合理,那么通常来说,可以比较快速和高效地执行完这些task线程。

 

以上就是Spark作业的基本运行原理的说明

 

 

Refer

 

 

  Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架,

最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一,与Hadoop和Storm等其他大数据和MapReduce技术相比,Spark有如下优势:

  • Spark提供了一个全面、统一的框架用于管理各种有着不同性质(文本数据、图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求
  • 官方资料介绍Spark可以将Hadoop集群中的应用在内存中的运行速度提升100倍,甚至能够将应用在磁盘上的运行速度提升10倍

 目标:

  • 架构及生态
  • spark 与 hadoop
  • 运行流程及特点
  • 常用术语
  • standalone模式
  • yarn集群
  • RDD运行流程

 

架构及生态:

  • 通常当需要处理的数据量超过了单机尺度(比如我们的计算机有4GB的内存,而我们需要处理100GB以上的数据)这时我们可以选择spark集群进行计算,
  • 有时我们可能需要处理的数据量并不大,但是计算很复杂,需要大量的时间,这时我们也可以选择利用spark集群强大的计算资源,并行化地计算,其架构示意图如下:

 

    • Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的
    • Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。
    • Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据
    • MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。
    • GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作

 

  • Spark架构的组成图如下:

    • Cluster Manager:在standalone模式中即为Master主节点,控制整个集群,监控worker。在YARN模式中为资源管理器
    • Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。
    • Driver: 运行Application 的main()函数
    • Executor:执行器,是为某个Application运行在worker node上的一个进程

 

Spark与hadoop:

  • Hadoop有两个核心模块,分布式存储模块HDFS和分布式计算模块Mapreduce
  • spark本身并没有提供分布式文件系统,因此spark的分析大多依赖于Hadoop的分布式文件系统HDFS
  • Hadoop的Mapreduce与spark都可以进行数据计算,而相比于Mapreduce,spark的速度更快并且提供的功能更加丰富

 关系图如下

 

 

 

运行流程及特点:

spark运行流程图如下:

  1. 构建Spark Application的运行环境,启动SparkContext
  2. SparkContext向资源管理器(可以是Standalone,Mesos,Yarn)申请运行Executor资源,并启动StandaloneExecutorbackend,
  3. Executor向SparkContext申请Task
  4. SparkContext将应用程序分发给Executor
  5. SparkContext构建成DAG图,将DAG图分解成Stage、将Taskset发送给Task Scheduler,最后由Task Scheduler将Task发送给Executor运行
  6. Task在Executor上运行,运行完释放所有资源

 

 

Spark运行特点:

  1. 每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行Task。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统
  2. Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了
  3. 提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换
  4. Task采用了数据本地性和推测执行的优化机制

 

 

 

 

 Spark运行模式:

  • Spark的运行模式多种多样,灵活多变,
    • 部署在单机上时,既可以用本地模式运行,也可以用伪分布模式运行,
    • 而当以分布式集群的方式部署时,也有众多的运行模式可供选择,这取决于集群的实际情况,
    • 底层的资源调度即可以依赖外部资源调度框架,也可以使用Spark内建的Standalone模式。
  • 对于外部资源调度框架的支持,目前的实现包括相对稳定的Mesos模式,以及hadoop YARN模式
  • 本地模式:常用于本地开发测试,本地还分别 local 和 local cluster

 

 

 

standalone: 独立集群运行模式

  • Standalone模式使用Spark自带的资源调度框架
  • 采用Master/Slaves的典型架构,选用ZooKeeper来实现Master的HA

框架结构图如下

该模式主要的节点有Client节点、Master节点和Worker节点。

  其中Driver既可以运行在Master节点上中,也可以运行在本地Client端。

    当用spark-shell交互式工具提交Spark的Job时,Driver在Master节点上运行;

    当使用spark-submit工具提交Job或者在Eclips、IDEA等开发平台上使用”new SparkConf.setManager(“spark://master:7077”)”方式运行Spark任务时,Driver是运行在本地Client端上的

 

 

运行过程如下图:(参考至:http://blog.csdn.net/gamer_gyt/article/details/51833681

  1. SparkContext连接到Master,向Master注册并申请资源(CPU Core 和Memory)
  2. Master根据SparkContext的资源申请要求和Worker心跳周期内报告的信息决定在哪个Worker上分配资源,然后在该Worker上获取资源,然后启动StandaloneExecutorBackend;
  3. StandaloneExecutorBackend向SparkContext注册;
  4. SparkContext将Applicaiton代码发送给StandaloneExecutorBackend;并且SparkContext解析Applicaiton代码,构建DAG图,并提交给DAG Scheduler分解成Stage(当碰到Action操作时,就会催生Job;每个Job中含有1个或多个Stage,Stage一般在获取外部数据和shuffle之前产生),然后以Stage(或者称为TaskSet)提交给Task Scheduler,Task Scheduler负责将Task分配到相应的Worker,最后提交给StandaloneExecutorBackend执行;
  5. StandaloneExecutorBackend会建立Executor线程池,开始执行Task,并向SparkContext报告,直至Task完成
  6. 所有Task完成后,SparkContext向Master注销,释放资源

 

 

yarn:  (参考:http://blog.csdn.net/gamer_gyt/article/details/51833681)

  • Spark on YARN模式根据Driver在集群中的位置分为两种模式:
    • 一种是YARN-Client模式,
    • 另一种是YARN-Cluster(或称为YARN-Standalone模式)
  • Yarn-Client模式中,Driver在客户端本地运行,这种模式可以使得Spark Application和客户端进行交互,因为Driver在客户端,所以可以通过webUI访问Driver的状态,默认是http://hadoop1:4040访问,而YARN通过http:// hadoop1:8088访问

 

YARN-client的工作流程步骤为:

  • Spark Yarn Client向YARN的ResourceManager申请启动Application Master。同时在SparkContent初始化中将创建DAGScheduler和TASKScheduler等,由于我们选择的是Yarn-Client模式,程序会选择YarnClientClusterScheduler和YarnClientSchedulerBackend
  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,与YARN-Cluster区别的是在该ApplicationMaster不运行SparkContext,只与SparkContext进行联系进行资源的分派
  • Client中的SparkContext初始化完毕后,与ApplicationMaster建立通讯,向ResourceManager注册,根据任务信息向ResourceManager申请资源(Container)
  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向Client中的SparkContext注册并申请Task
  • client中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向Driver汇报运行的状态和进度,以让Client随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务
  • 应用程序运行完成后,Client的SparkContext向ResourceManager申请注销并关闭自己

 

 

 

 

Spark Cluster模式:

  • 在YARN-Cluster模式中,当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:
    • 第一个阶段是把Spark的Driver作为一个ApplicationMaster在YARN集群中先启动;
    • 第二个阶段是由ApplicationMaster创建应用程序,然后为它向ResourceManager申请资源,并启动Executor来运行Task,同时监控它的整个运行过程,直到运行完成

YARN-cluster的工作流程分为以下几个步骤

 

  • Spark Yarn Client向YARN中提交应用程序,包括ApplicationMaster程序、启动ApplicationMaster的命令、需要在Executor中运行的程序等
  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,其中ApplicationMaster进行SparkContext等的初始化
  • ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束
  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向ApplicationMaster中的SparkContext注册并申请Task。这一点和Standalone模式一样,只不过SparkContext在Spark Application中初始化时,使用CoarseGrainedSchedulerBackend配合YarnClusterScheduler进行任务的调度,其中YarnClusterScheduler只是对TaskSchedulerImpl的一个简单包装,增加了对Executor的等待逻辑等
  • ApplicationMaster中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务
  • 应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己

 

 

Spark Client 和 Spark Cluster的区别:

  • 理解YARN-Client和YARN-Cluster深层次的区别之前先清楚一个概念:Application Master。在YARN中,每个Application实例都有一个ApplicationMaster进程,它是Application启动的第一个容器。它负责和ResourceManager打交道并请求资源,获取资源之后告诉NodeManager为其启动Container。从深层次的含义讲YARN-Cluster和YARN-Client模式的区别其实就是ApplicationMaster进程的区别
  • YARN-Cluster模式下,Driver运行在AM(Application Master)中,它负责向YARN申请资源,并监督作业的运行状况。当用户提交了作业之后,就可以关掉Client,作业会继续在YARN上运行,因而YARN-Cluster模式不适合运行交互类型的作业
  • YARN-Client模式下,Application Master仅仅向YARN请求Executor,Client会和请求的Container通信来调度他们工作,也就是说Client不能离开

思考: 我们在使用Spark提交job时使用的哪种模式?

 

 

RDD运行流程:

  • RDD在Spark中运行大概分为以下三步:
    1. 创建RDD对象
    2. DAGScheduler模块介入运算,计算RDD之间的依赖关系,RDD之间的依赖关系就形成了DAG
    3. 每一个Job被分为多个Stage。划分Stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个Stage,避免多个Stage之间的消息传递开销

示例图如下:

以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的

 

  • 创建 RDD  上面的例子除去最后一个 collect 是个动作,不会创建 RDD 之外,前面四个转换都会创建出新的 RDD 。因此第一步就是创建好所有 RDD( 内部的五项信息 )?
  • 创建执行计划 Spark 会尽可能地管道化,并基于是否要重新组织数据来划分 阶段 (stage) ,例如本例中的 groupBy() 转换就会将整个执行计划划分成两阶段执行。最终会产生一个 DAG(directed acyclic graph ,有向无环图 ) 作为逻辑执行计划

调度任务  将各阶段划分成不同的 任务 (task) ,每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续

 

转载于:https://www.cnblogs.com/panpanwelcome/p/10250366.html

你可能感兴趣的文章
算法和数据结构(三)
查看>>
看一下你在中国属于哪个阶层?
查看>>
在iOS 8中使用UIAlertController
查看>>
js获取ip地址,操作系统,浏览器版本等信息,可兼容
查看>>
Ubuntu下的eclipse安装subclipse遇到没有javahl的问题...(2天解决了)
查看>>
Cadence Allegro 如何关闭铺铜(覆铜)shape的显示和设置shape显示模式–allegro小技巧...
查看>>
Atcoder Grand Contest 004 题解
查看>>
MFC中 给对话框添加背景图片
查看>>
alter database databasename set single_user with rollback IMMEDIATE 不成功问题
查看>>
idea 系列破解
查看>>
Repeater + Resources 列表 [原创][分享]
查看>>
c# Resolve SQlite Concurrency Exception Problem (Using Read-Write Lock)
查看>>
dependency injection
查看>>
WCF揭秘——使用AJAX+WCF服务进行页面开发
查看>>
C#综合揭秘——细说多线程(下)
查看>>
c#运算符 ?
查看>>
ps互补色
查看>>
Silverlight学习笔记(九)-----RenderTransform特效【五种基本变换】及【矩阵变换MatrixTransform】...
查看>>
【题解】青蛙的约会
查看>>
【eclipse】点Clean后没反应
查看>>